Hyperight

A Tale of Scale: Intro to Distributed TensorFlow – Sahar Asadi, ClusterOne

Developing and training distributed deep learning models at scale is challenging. We will show how to overcome these challenges and successfully build and train a distributed deep neural network with TensorFlow. First, we will present deep learning on distributed infrastructure and cover various concepts such as experiment parallelism, model parallelism and data parallelism. Then, we will discuss limitations and challenges of each approach. Later, we will demonstrate hands on how to build and train distributed deep neural networks using TensorFlow GRPC (parameter and worker servers) on Clusterone.

Key Takeaways

  • Why machine learning on distributed architecture
  • Key frameworks, methods and limitations
  • Bringing it to practice with tips and tricks

Add comment

Highlight option

Turn on the "highlight" option for any widget, to get an alternative styling like this. You can change the colors for highlighted widgets in the theme options. See more examples below.

Instagram

Instagram has returned empty data. Please authorize your Instagram account in the plugin settings .

Ivana Kotorchevikj

Categories count color

Advertisement

Small ads

Flickr

  • It never ends
  • stand still screening-smoking girl
  • Maria d'Odessa performs her art of make-up
  • Afro-deko-mono
  • Maria d'Odessa, touching
  • Maria d'Odessa au bâton de rouge-baiser
  • Maria d'Odessa & the red lipstick
  • Maria d'Odessa, soulful.
  • Peanuts

Social Widget

Collaboratively harness market-driven processes whereas resource-leveling internal or "organic" sources.

ThemeForest