Building and Maintaining an ML Production Pipeline at SEB – Ala Tarighati, SEB AB


In this session, we will go through the steps required to build and maintain an ML Production pipeline at a financial organization, SEB AB. We will describe our approach for build and deployment of ML models into a Production environment. We will further share our experiences and challenges for ML life-cycle management of ML models, from a Data scientist’s perspective.

Key Takeaways

  • Machine Learning model into Production 
  • MLOPS, ML model life-cycle management 
  • Continuous Delivery, Continuous Integration, Continuous Training

Add comment