Backend Design: Empowering Data Science - Erik Dahlberg

Talking about how Klarna is organized to support efficient data science and how the backend design has played a big role both for automation and to create clear division of responsibilities between data engineers and data scientists.

Questions:

• How do you create an environment with short time to market for machine learning models? Why is it important?
• How differences in analytics and live environments is a great challenge in data science?
• Having one code base for features that is the same for analytics and live is a big step forward.I will show how it can be enabled by creating a common event based data model
• How Data Scientists are empowered by owning feature code base?

Comments

No comments to display.